The Impact of Suzaku on the Knowledge of Cataclysmic Variables

The Golden Age of CVs and Related Objects, 2011.09.14

Dai Takei
Rikkyo University
Harvard-Smithsonian Center for Astrophysics
Acknowledgement

- Suzaku managers and operation members
- Hayakawa Satio foundation (travel grant)
- My Ph.D. thesis advisers ...
 - Shunji Kitamoto (Rikkyo University)
 - Masahiro Tsujimoto (JAXA/ISAS)
 - Jan-Uwe Ness (ESA/ESAC)
 - Jeremy J. Drake (Harvard CfA)

and all concerned ...

Vorrei ringraziare gli organizzatori per avermi dato la possibilita` di parlare
I would like to thank the organizers for giving me a chance to talk
Scope & Goal

- **Scope**: observational results in X-rays
 - An emphasis on Suzaku results
 - Results in other wavelengths are not included
- **Goal**: to convey three ideas
 - Various fields are covered with Suzaku
 Magnetized CVs, Dwarf Novae, Classical Novae, etc.
 - Great impacts on the knowledge of CVs
 Non-thermal processes with high energy emission
 - ASTRO-H has important roles in future
 Further improvement of X-ray instruments
Talk Plan

1. Suzaku X-ray Mission
2. Review of Suzaku Results
3. Suzaku Impact on CVs
4. Future Outlook

Further reading:
- Suzaku Home Page
Talk Plan

1. Suzaku X-ray Mission ~ 3 min
2. Review of Suzaku Results ~ 6 min
3. Suzaku Impact on CVs ~ 8 min
4. Future Outlook ~ 6 min

Further reading:
• Suzaku Home Page
1-1. What is Suzaku ...?
1-1. What is Suzaku ...?
1-2. Suzaku X-ray Satellite

- Japan-US joint mission
- Launched on July 10, 2005
- Low-Earth orbit ...
 - altitude \(\sim 570 \text{ km} \)
 - orbital period \(\sim 96 \text{ min} \)
1-2. Suzaku X-ray Satellite

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRS</td>
<td>Disable</td>
</tr>
<tr>
<td>XIS</td>
<td>(0,1,2,3)</td>
</tr>
<tr>
<td>HXD</td>
<td>(PIN,GSO)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>XIS</th>
<th>HXD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandpass</td>
<td>62.0 ~ 1.0 Å</td>
<td>0.8 ~ 0.02 Å</td>
</tr>
<tr>
<td>Spatial Res.</td>
<td>2 arcmin. (HPD)</td>
<td>N/A</td>
</tr>
<tr>
<td>Energy Res.</td>
<td>130 eV @ 6 keV</td>
<td>4.0 keV (PIN)</td>
</tr>
<tr>
<td>Timing Res.</td>
<td>8 sec</td>
<td>61 μsec</td>
</tr>
</tbody>
</table>

1-3. Advantages of Suzaku

- Wide-band X-ray observations with ...
 - high effective areas
 - medium energy resolutions
 - low background levels

Diagnoses of emission line spectra
Studies of high energy phenomena

...> Let’s take a look!
2. Review of Suzaku Results

1. Magnetic CVs (Polar, IP)
2. Dwarf Novae
3. Classical Novae

Three Ph.D. and 16 papers were produced. Two of them were issued in press releases.
2-1. Magnetic CVs

• Ph.D. Thesis
 - Takayuki Yuasa, 2011
 Suzaku Studies of White Dwarf Stars
 and the Galactic X-ray Background Emission

• Refereed Papers
 - Hayashi et al. 2011, PASJ
 - Yuasa et al. 2010, A&A
 - Scaringi et al. 2010, MNRAS
 - Nobukawa et al. 2009, PASJ
 - Terada et al. 2008, PASJ
2-1. Magnetic CVs

- **Ph.D. Thesis**

- **Refereed Papers**
 - Hayashi et al. 2011, PASJ
 - Yuasa et al. 2010, A&A
 - Scaringi et al. 2010, MNRAS
 - Nobukawa et al. 2009, PASJ
 - Terada et al. 2008, PASJ

Systematic studies were conducted on magnetic CVs.
2-1. Magnetic CVs

Ph.D. Thesis
- Takayuki Yuasa, 2011
 Suzaku Studies of White Dwarf Stars
 and the Galactic X-ray Background Emission

Refereed Papers
- Hayashi et al. 2011, PASJ
- Yuasa et al. 2010, A&A
- Scaringi et al. 2010, MNRAS
- Nobukawa et al. 2009, PASJ
- Terada et al. 2008, PASJ

Next Talk

Main Topic (1)
2-2. Dwarf Novae (DNe)

- **Ph.D. Thesis**
 - Shunsaku Okada, 2008
 An Observational Study on the Nature of the Boundary Layer Plasma in the Non-Magnetic Cataclysmic Variable SS Cygni

- **Refereed Papers**
 - Byckling et al. 2010, MNRAS
 - Ishida et al. 2009, PASJ
2-2. Dwarf Novae (DNe)

- Ph.D. Thesis
 - Shunsaku Okada, 2008
 An Observational Study on the Nature of the Boundary Layer Plasma in the Non-Magnetic Cataclysmic Variable SS Cygni

- Refereed Papers
 - Byckling et al. 2010, MNRAS
 - Ishida et al. 2009, PASJ

Detailed spectroscopy was conducted on Dwarf Novae

1. Phase-induced spectroscopy
2. Partial eclipse
3. Luminosity classification, etc...

X-ray (thin-thermal) (fluorescence)

WD

Boundary Layer

Accretion Disk
2-3. Classical Novae (CNe)

- **Ph.D. Thesis**
 - Dai Takei, 2011
 - An X-ray Study of Classical Novae

- **Refereed Papers**
 - Takei et al. 2011, PASJ
 - Takei and Ness 2010, AN
 - Takei 2010, Astronomical Herald
 - Tsujimoto et al. 2009, PASJ
 - Takei et al. 2008, PASJ
2-3. Classical Novae (CNe)

- **Ph.D. Thesis**
 - Dai Takei, 2011
 - An X-ray Study of Classical Novae

- **Refereed Papers**
 - Takei et al. 2011, PASJ
 - Takei and Ness 2010, AN
 - Takei 2010, Astronomical Herald
 - Tsujimoto et al. 2009, PASJ
 - Takei et al. 2008, PASJ

Systematic studies were conducted on Classical Novae

1. WD mass
2. Ejecta chemistry
3. Binary evolution, etc...
2-3. Classical Novae (CNe)

- **Ph.D. Thesis**
 - Dai Takei, 2011
 - An X-ray Study of Classical Novae

- **Refereed Papers**
 - Takei et al. 2011, PASJ
 - Takei and Ness 2010, AN
 - Takei 2010, Astronomical Herald
 - Tsujimoto et al. 2009, PASJ
 - Takei et al. 2008, PASJ

X-ray observation of CNe
(e.g., V2491 Cyg; Swift)

1. Surveys by amateur astronomers
2. X-ray monitoring with Swift
3. Deep spectroscopy with Suzaku

Friday, 17:00
by Dr. Kim Page

- < Suzaku
- < XMM-Newton
2-3. Classical Novae (CNe)

- **Ph.D. Thesis**
 - Dai Takei, 2011
 An X-ray Study of Classical Novae

- **Refereed Papers**
 - Takei et al. 2011, PASJ
 - Takei and Ness 2010, AN
 - Takei 2010, Astronomical Herald
 - Tsujimoto et al. 2009, PASJ
 - Takei et al. 2008, PASJ

The golden age of CNe has arrived!!
3. Suzaku Impact on CVs

- Two press releases
 - Non-thermal pulses from AE Aqr (Magnetic CVs) *(Terada et al. 2008, PASJ, 60, 387)*

- What is the Suzaku impact ...?

CVs have potential to be non-thermal sources
3-1. WD Pulsars

- **Neutron Star (NS) pulsars vs. WD pulsars**
 - Particle acceleration occurs from NS pulsars
 - Synchrotron emission from magnetosphere
 (e.g., *Crab pulsar: Mori et al. 2004, ApJ*)
3-1. WD Pulsars

Neutron Star Pulsars

- Particle acceleration occurs from NS pulsars.
- Synchrotron emission from magnetosphere (e.g., Crab pulsar: Mori et al. 2004, ApJ).
- There should be WD pulsars...
- Suzaku discovered 33 sec pulses from AE Aqr.
- Synchrotron emission is a feasible origin (Terada et al. 2008, PASJ).

Neutron star pulsar
(X-ray image of Crab pulsar)

- Spin msec ~ sec
- Radiation
- Magnetic field ~10^{12-13} Gauss
- Size ~ 10 km
- Induced electric potential ~10^{16-18} Volts
3-1. WD Pulsars

- **Neutron Star (NS) pulsars vs. WD pulsars**
 - Particle acceleration occurs from NS pulsars
 - Synchrotron emission from magnetosphere
 (e.g., Crab pulsar: Mori et al. 2004, ApJ)
 - There should be WD pulsars ...?
3-1. WD Pulsars

- Neutron Star (NS) pulsars vs. WD pulsars
 - Particle acceleration occurs from NS pulsars
 - Synchrotron emission from magnetosphere
 (e.g., Crab pulsar: Mori et al. 2004, ApJ)
 - There should be WD pulsars ...?

<table>
<thead>
<tr>
<th>Dynamo in bicycle</th>
<th>Neutron Star</th>
<th>White Dwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin ~ a few sec</td>
<td>Spin msec ~ sec</td>
<td>Spin sec ~ hr</td>
</tr>
<tr>
<td>Magnetic field ~10^{23} Gauss</td>
<td>Magnetic field ~10^{12-13} Gauss</td>
<td>Magnetic field ~10^{-5-7} Gauss</td>
</tr>
<tr>
<td>Size ~ a few cm</td>
<td>Size ~ 10 km</td>
<td>Size ~ 10000 km</td>
</tr>
<tr>
<td>Induced electric potential ~a few Volts</td>
<td>Induced electric potential ~10^{16-18} Volts</td>
<td>Induced electric potential ~10^{14-16} Volts</td>
</tr>
</tbody>
</table>
3-1. WD Pulsars

- **Neutron Star (NS) pulsars vs. WD pulsars**
 - Particle acceleration occurs from NS pulsars
 - Synchrotron emission from magnetosphere
 (e.g., Crab pulsar: Mori et al. 2004, ApJ)
 - There should be WD pulsars ...?
 - Suzaku discovered 33 sec pulses from AE Aqr
3-1. WD Pulsars

- **Neutron Star (NS) pulsars vs. WD pulsars**
 - Particle acceleration occurs from NS pulsars
 - Synchrotron emission from magnetosphere (e.g., Crab pulsar: Mori et al. 2004, ApJ)
 - There should be WD pulsars...
 - Suzaku discovered 33 sec pulses from AE Aqr
 - Synchrotron emission is a feasible origin (Terada et al. 2008, PASJ)

X-ray pulses from AE Aqr (Terada et al. 2008, PASJ)
3-1. WD Pulsars

- **Neutron Star (NS) pulsars vs. WD pulsars**
 - Particle acceleration occurs from NS pulsars
 - Synchrotron emission from magnetosphere
 (e.g., Crab pulsar: Mori et al. 2004, ApJ)
 - There should be WD pulsars ...?
 - Suzaku discovered 33 sec pulses from AE Aqr
 - Synchrotron emission is a feasible origin
 (Terada et al. 2008, PASJ)
3-1. WD Pulsars

- **Neutron Star (NS) pulsars vs. WD pulsars**
 - Particle acceleration occurs from NS pulsars
 - Synchrotron emission from magnetosphere
 (e.g., Crab pulsar: Mori et al. 2004, ApJ)
 - There should be WD pulsars ...?
 - Suzaku discovered 33 sec pulses from AE Aqr
 - Synchrotron emission is a feasible origin
 (Terada et al. 2008, PASJ)

First discovery of non-thermal X-ray pulses
WDs have potential as particle accelerators
3-2. Hard X-rays from CNe

- **Annihilation signatures from CNe**
 - CNe produce radioactive isotopes
 (e.g., Clayton and Hoyle 1974, ApJL)
3-2. Hard X-rays from CNe

- **Annihilation signatures from CNe**
 - CNe produce radioactive isotopes (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst (e.g., Gomez-Gomar et al. 1998, MNRAS)
 - We discovered the signature with Suzaku ...? (Takei et al. 2009, ApJL)
 - A model was proposed to explain the result (Suzuki and Shigeyama 2010, ApJL)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Lifetime</th>
<th>Novae</th>
</tr>
</thead>
<tbody>
<tr>
<td>13N</td>
<td>862 s</td>
<td>CO, ONe</td>
</tr>
<tr>
<td>18F</td>
<td>158 m</td>
<td>CO, ONe</td>
</tr>
<tr>
<td>7Be</td>
<td>77 d</td>
<td>CO</td>
</tr>
<tr>
<td>22Na</td>
<td>3.75 y</td>
<td>ONe</td>
</tr>
<tr>
<td>26Al</td>
<td>10^6 y</td>
<td>ONe</td>
</tr>
</tbody>
</table>

- e.g., Hernanz et al. 2001
- Gomez-Gomar et al. 1998
3-2. Hard X-rays from CNe

- **Annihilation signatures**
 - CNe produce radioactive isotopes (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst (e.g., Gomez-Gomar et al. 1998, MNRAS)
 - We discovered the signature with Suzaku (Takei et al. 2009, ApJL)
 - A model was proposed to explain the result (Suzuki and Shigeyama 2010, ApJL)

Radioactive Isotope in CNe (proton-rich nuclei)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Lifetime</th>
<th>Novae</th>
</tr>
</thead>
<tbody>
<tr>
<td>13N</td>
<td>862 s</td>
<td>CO, ONe</td>
</tr>
</tbody>
</table>

Nuclear Reactions

- $^{22}_{11}$Na
 - EC (10%)
 - β^+ (90%)
 - Internal Conversion
 - $^{22}_{10}$Ne *
 - Annihilation

- $^{22}_{11}$Na: Neutron-deficient nuclei
3-2. Hard X-rays from CNe

- **Annihilation signatures from CNe**
 - CNe produce radioactive isotopes
 (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst
 (e.g., Gomez-Gomar et al. 1998, MNRAS)
3-2. Hard X-rays from CNe

- **Annihilation signatures from CNe**
 - CNe produce radioactive isotopes (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst (e.g., Gomez-Gomar et al. 1998, MNRAS)
 - We discovered the signature with Suzaku (Takei et al. 2009, ApJL)
 - A model was proposed to explain the result (Suzuki and Shigeyama 2010, ApJL)
3-2. Hard X-rays from CNe

- **Annihilation signatures from CNe**
 - CNe produce radioactive isotopes (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst (e.g., Gomez-Gomar et al. 1998, MNRAS)
 - We discovered the signature with Suzaku ...? (Takei et al. 2009, ApJL)
3-2. Hard X-rays from CNe

- **Annihilation signatures from CNe**
 - CNe produce radioactive isotopes (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst (e.g., Gomez-Gomar et al. 1998, MNRAS)
 - We discovered the signature with Suzaku (Takei et al. 2009, ApJL)
 - A model was proposed to explain the result (Suzuki and Shigeyama 2010, ApJL)

X-ray Spectra of CNe (V2491 Cyg, Day 9)

![X-ray Spectra Graph]

- Counts s⁻¹ keV⁻¹
- Energy (keV)
- Fe XXV Kα
- APEC
- Power-Law
- HXD (PIN)
- XIS (FI)
- XIS (BI)
- (APEC+Bremss)
3-2. Hard X-rays from CNe

- Annihilation signatures from CNe
 - CNe produce radioactive isotopes (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst (e.g., Gomez-Gomar et al. 1998, MNRAS)
 - We discovered the signature with Suzaku (Takei et al. 2009, ApJL)
 - A model was proposed to explain the result (Suzuki and Shigeyama 2010, ApJL)

X-ray Spectra of CNe (V2491 Cyg, Day 9)

Power-law ($\Gamma = 0.1$)
3-2. Hard X-rays from CNe

- **Annihilation signatures from CNe**
 - CNe produce radioactive isotopes
 (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst
 (e.g., Gomez-Gomar et al. 1998, MNRAS)
 - We discovered the signature with Suzaku ...?
 - A model was proposed to explain the result
 (Suzuki and Shigeyama 2010, ApJL)
3-2. Hard X-rays from CNe

- **Annihilation signatures from CNe**
 - CNe produce radioactive isotopes (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst (e.g., Gomez-Gomar et al. 1998, MNRAS)
 - We discovered the signature with Suzaku (Takei et al. 2009, ApJL)
 - A model was proposed to explain the result (Suzuki and Shigeyama 2010, ApJL)

Compton Degradation Model

- $(^{22}\text{Na} > ^{22}\text{Ne})$
- 511 KeV
- 1.27 MeV

Suzaku

3-2. Hard X-rays from CNe

- Annihilation signatures from CNe
 - CNe produce radioactive isotopes (e.g., Clayton and Hoyle 1974, ApJL)
 - Hard X-rays are expected in an outburst (e.g., Gomez-Gomar et al. 1998, MNRAS)
 - We discovered the signature with Suzaku ...? (Takei et al. 2009, ApJL)
 - A model was proposed to explain the result (Suzuki and Shigeyama 2010, ApJL)

First discovery of high energy phenomena
CNe have potential as non-thermal sources
CVs have potential to be non-thermal sources
4. Future Outlook

1. ASTRO-H (Japan-US X-ray mission)
2. Further studies of CVs
3. Are CVs origins of cosmic-rays ...?
4-1. ASTRO-H Mission

- Japan-US joint X-ray mission
- Satellite will be launched in 2014
- Advanced X-ray instruments
 - Telescope: HXT (Bragg-multilayer mirror)
 - SXT (Lightweight Wolter-I mirror)
 - Detector: SXS (Micro calorimeter)
 - SXI (Wide-field CCD array)
 - HXI (Si-CdTe imager)
 - SGD (Compton camera)
4-1. ASTRO-H Mission

X-ray Instruments onboard ASTRO-H

- SXS: HXT
- SXI: SXT
- HXI: SXS
- SGD: SXI

4-2. Further Studies of CVs

- **Survey of non-thermal emission**
 - HXI will provide hard X-ray images (>10 keV)
 - Study of synchrotron emission from CVs
4-2. Further Studies of CVs

- **Survey of non-thermal emission**
 - HXI will provide hard X-ray images (>10 keV)
 - Study of synchrotron emission from CVs

- **First discovery of annihilation lines**
 - SGD has potential to detect 511 keV photons
 - Study of annihilation processes on CNe

ASTRO-H/HXI
(shadow image; 28-33 keV)

Private communication with H. Odaka
4-2. Further Studies of CVs

- **Survey of non-thermal emission**
 - HXI will provide hard X-ray images (>10 keV)
 - Study of synchrotron emission from CVs

- **First discovery of annihilation lines**
 - SGD has potential to detect 511 keV photons
 - Study of annihilation processes on CNe
4-2. Further Studies of CVs

- **Survey of non-thermal emission**
 - HXI will provide hard X-ray images (>10 keV)
 - Study of synchrotron emission from CVs

- **First discovery**
 - SGD has potential to detect 511 keV photons
 - Study of annihilation processes on CNe

Compton Degrad. Model
(V2491 Cyg, $M_{\text{ejecta}} = 10^{-3} M_\odot$)

![Graph showing Compton Degradation Model]

ASTRO-H detection limit
(100 ksec)

4-2. Further Studies of CVs

- **Survey of non-thermal emission**
 - HXI will provide hard X-ray images (>10 keV)
 > Study of synchrotron emission from CVs

- **First discovery of annihilation lines**
 - SGD has potential to detect 511 keV photons
 > Study of annihilation processes on CNe

Research of particle acceleration in our Galaxy
Approach to positron factories in the Universe
4-3. Origins of Cosmic-Rays

- **Cosmic-ray electrons & positrons**
 - Excess was found by PAMERA (*Adriani*+ 2009)
 - New sites of particle accel., or dark matter?
4-3. Origins of Cosmic-Rays

- **Cosmic-ray electrons & positrons**
 - Excess was found by PAMERA (Adriani+ 2009)
 - New sites of particle accel., or dark matter?

- Recent progress on CVs
 - AE Aqr (Suzaku; Terada+ 2008)
 - V2491 Cyg (Suzaku; Takei+ 2009)
 - V407 Cyg (Fermi; Abdo+ 2010)

Result of PAMERA (electron & positron excess)
4-3. Origins of Cosmic-Rays

- **Cosmic-ray electrons & positrons**
 - Excess was found by PAMERA (*Adriani+ 2009*)
 - New sites of particle accel., or dark matter?

- **Recent progress on CVs**
 - AE Aqr (*Suzaku; Terada+ 2008*)
 - V2491 Cyg (*Suzaku; Takei+ 2009*)
 - V407 Cyg (*Fermi; Abdo+ 2010*)

This Talk

Friday, 18:40

by Dr. Takashi Iijima
4-3. Origins of Cosmic-Rays

- Cosmic-ray electrons
 - Excess was found by PAMELA (Adriani+ 2009)
 - New sites of particle acceleration, or dark matter?

- Recent progress on CVs
 - AE Aqr (Suzaku; Terada+ 2008)
 - V2491 Cyg (Suzaku; Takei+ 2009)
 - V407 Cyg (Fermi; Abdo+ 2010)
4-3. Origins of Cosmic-Rays

- Cosmic-ray electrons & positrons
 - Excess was found by PAMERA (Adriani+ 2009)
 - New sites of particle accel., or dark matter?

- Recent progress on CVs
 - AE Aqr (Suzaku; Terada+ 2008)
 - V2491 Cyg (Suzaku; Takei+ 2009)
 - V407 Cyg (Fermi; Abdo+ 2010)

CVs are important objects for cosmic-rays
The platinum age of CVs is coming soon !?
Summary

1. Suzaku made impacts on the CVs science
2. We found non-thermal X-rays from CNe
3. ASTRO-H will be bright, like these CVs

Grazie per la cortese attenzione !!
Please let me know if you are interested in this work.
dtakei@head.cfa.harvard.edu